1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#![cfg_attr(feature = "cargo-clippy", allow(many_single_char_names))] use simd::u32x4; use consts::{BLOCK_LEN, K32X4}; use block_buffer::byteorder::{BE, ByteOrder}; /// Not an intrinsic, but works like an unaligned load. #[inline] fn sha256load(v2: u32x4, v3: u32x4) -> u32x4 { u32x4(v3.3, v2.0, v2.1, v2.2) } /// Not an intrinsic, but useful for swapping vectors. #[inline] fn sha256swap(v0: u32x4) -> u32x4 { u32x4(v0.2, v0.3, v0.0, v0.1) } /// Emulates `llvm.x86.sha256msg1` intrinsic. // #[inline] fn sha256msg1(v0: u32x4, v1: u32x4) -> u32x4 { // sigma 0 on vectors #[inline] fn sigma0x4(x: u32x4) -> u32x4 { ((x >> u32x4( 7, 7, 7, 7)) | (x << u32x4(25, 25, 25, 25))) ^ ((x >> u32x4(18, 18, 18, 18)) | (x << u32x4(14, 14, 14, 14))) ^ (x >> u32x4( 3, 3, 3, 3)) } v0 + sigma0x4(sha256load(v0, v1)) } /// Emulates `llvm.x86.sha256msg2` intrinsic. // #[inline] fn sha256msg2(v4: u32x4, v3: u32x4) -> u32x4 { macro_rules! sigma1 { ($a:expr) => ($a.rotate_right(17) ^ $a.rotate_right(19) ^ ($a >> 10)) } let u32x4(x3, x2, x1, x0) = v4; let u32x4(w15, w14, _, _) = v3; let w16 = x0.wrapping_add(sigma1!(w14)); let w17 = x1.wrapping_add(sigma1!(w15)); let w18 = x2.wrapping_add(sigma1!(w16)); let w19 = x3.wrapping_add(sigma1!(w17)); u32x4(w19, w18, w17, w16) } /* /// Performs 4 rounds of the SHA-256 message schedule update. fn sha256_schedule_x4(v0: u32x4, v1: u32x4, v2: u32x4, v3: u32x4) -> u32x4 { sha256msg2(sha256msg1(v0, v1) + sha256load(v2, v3), v3) }*/ /// Emulates `llvm.x86.sha256rnds2` intrinsic. // #[inline] fn sha256_digest_round_x2(cdgh: u32x4, abef: u32x4, wk: u32x4) -> u32x4 { macro_rules! big_sigma0 { ($a:expr) => (($a.rotate_right(2) ^ $a.rotate_right(13) ^ $a.rotate_right(22))) } macro_rules! big_sigma1 { ($a:expr) => (($a.rotate_right(6) ^ $a.rotate_right(11) ^ $a.rotate_right(25))) } macro_rules! bool3ary_202 { ($a:expr, $b:expr, $c:expr) => ($c ^ ($a & ($b ^ $c))) } // Choose, MD5F, SHA1C macro_rules! bool3ary_232 { ($a:expr, $b:expr, $c:expr) => (($a & $b) ^ ($a & $c) ^ ($b & $c)) } // Majority, SHA1M let u32x4(_, _, wk1, wk0) = wk; let u32x4(a0, b0, e0, f0) = abef; let u32x4(c0, d0, g0, h0) = cdgh; // a round let x0 = big_sigma1!(e0) .wrapping_add(bool3ary_202!(e0, f0, g0)) .wrapping_add(wk0) .wrapping_add(h0); let y0 = big_sigma0!(a0).wrapping_add(bool3ary_232!(a0, b0, c0)); let (a1, b1, c1, d1, e1, f1, g1, h1) = (x0.wrapping_add(y0), a0, b0, c0, x0.wrapping_add(d0), e0, f0, g0); // a round let x1 = big_sigma1!(e1) .wrapping_add(bool3ary_202!(e1, f1, g1)) .wrapping_add(wk1) .wrapping_add(h1); let y1 = big_sigma0!(a1).wrapping_add(bool3ary_232!(a1, b1, c1)); let (a2, b2, _, _, e2, f2, _, _) = (x1.wrapping_add(y1), a1, b1, c1, x1.wrapping_add(d1), e1, f1, g1); u32x4(a2, b2, e2, f2) } /// Process a block with the SHA-256 algorithm. fn sha256_digest_block_u32(state: &mut [u32; 8], block: &[u32; 16]) { let k = &K32X4; macro_rules! schedule { ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => ( sha256msg2(sha256msg1($v0, $v1) + sha256load($v2, $v3), $v3) ) } macro_rules! rounds4 { ($abef:ident, $cdgh:ident, $rest:expr) => { { $cdgh = sha256_digest_round_x2($cdgh, $abef, $rest); $abef = sha256_digest_round_x2($abef, $cdgh, sha256swap($rest)); } } } let mut abef = u32x4(state[0], state[1], state[4], state[5]); let mut cdgh = u32x4(state[2], state[3], state[6], state[7]); // Rounds 0..64 let mut w0 = u32x4(block[3], block[2], block[1], block[0]); rounds4!(abef, cdgh, k[0] + w0); let mut w1 = u32x4(block[7], block[6], block[5], block[4]); rounds4!(abef, cdgh, k[1] + w1); let mut w2 = u32x4(block[11], block[10], block[9], block[8]); rounds4!(abef, cdgh, k[2] + w2); let mut w3 = u32x4(block[15], block[14], block[13], block[12]); rounds4!(abef, cdgh, k[3] + w3); let mut w4 = schedule!(w0, w1, w2, w3); rounds4!(abef, cdgh, k[4] + w4); w0 = schedule!(w1, w2, w3, w4); rounds4!(abef, cdgh, k[5] + w0); w1 = schedule!(w2, w3, w4, w0); rounds4!(abef, cdgh, k[6] + w1); w2 = schedule!(w3, w4, w0, w1); rounds4!(abef, cdgh, k[7] + w2); w3 = schedule!(w4, w0, w1, w2); rounds4!(abef, cdgh, k[8] + w3); w4 = schedule!(w0, w1, w2, w3); rounds4!(abef, cdgh, k[9] + w4); w0 = schedule!(w1, w2, w3, w4); rounds4!(abef, cdgh, k[10] + w0); w1 = schedule!(w2, w3, w4, w0); rounds4!(abef, cdgh, k[11] + w1); w2 = schedule!(w3, w4, w0, w1); rounds4!(abef, cdgh, k[12] + w2); w3 = schedule!(w4, w0, w1, w2); rounds4!(abef, cdgh, k[13] + w3); w4 = schedule!(w0, w1, w2, w3); rounds4!(abef, cdgh, k[14] + w4); w0 = schedule!(w1, w2, w3, w4); rounds4!(abef, cdgh, k[15] + w0); let u32x4(a, b, e, f) = abef; let u32x4(c, d, g, h) = cdgh; state[0] = state[0].wrapping_add(a); state[1] = state[1].wrapping_add(b); state[2] = state[2].wrapping_add(c); state[3] = state[3].wrapping_add(d); state[4] = state[4].wrapping_add(e); state[5] = state[5].wrapping_add(f); state[6] = state[6].wrapping_add(g); state[7] = state[7].wrapping_add(h); } /// Process a block with the SHA-256 algorithm. (See more...) /// /// Internally, this uses functions which resemble the new Intel SHA instruction /// sets, and so it's data locality properties may improve performance. However, /// to benefit the most from this implementation, replace these functions with /// x86 intrinsics to get a possible speed boost. /// /// # Implementation /// /// The `Sha256` algorithm is implemented with functions that resemble the new /// Intel SHA instruction set extensions. These intructions fall into two /// categories: message schedule calculation, and the message block 64-round /// digest calculation. The schedule-related instructions allow 4 rounds to be /// calculated as: /// /// ```ignore /// use std::simd::u32x4; /// use self::crypto::sha2::{ /// sha256msg1, /// sha256msg2, /// sha256load /// }; /// /// fn schedule4_data(work: &mut [u32x4], w: &[u32]) { /// /// // this is to illustrate the data order /// work[0] = u32x4(w[3], w[2], w[1], w[0]); /// work[1] = u32x4(w[7], w[6], w[5], w[4]); /// work[2] = u32x4(w[11], w[10], w[9], w[8]); /// work[3] = u32x4(w[15], w[14], w[13], w[12]); /// } /// /// fn schedule4_work(work: &mut [u32x4], t: usize) { /// /// // this is the core expression /// work[t] = sha256msg2(sha256msg1(work[t - 4], work[t - 3]) + /// sha256load(work[t - 2], work[t - 1]), /// work[t - 1]) /// } /// ``` /// /// instead of 4 rounds of: /// /// ```ignore /// fn schedule_work(w: &mut [u32], t: usize) { /// w[t] = sigma1!(w[t - 2]) + w[t - 7] + sigma0!(w[t - 15]) + w[t - 16]; /// } /// ``` /// /// and the digest-related instructions allow 4 rounds to be calculated as: /// /// ```ignore /// use std::simd::u32x4; /// use self::crypto::sha2::{K32X4, /// sha256rnds2, /// sha256swap /// }; /// /// fn rounds4(state: &mut [u32; 8], work: &mut [u32x4], t: usize) { /// let [a, b, c, d, e, f, g, h]: [u32; 8] = *state; /// /// // this is to illustrate the data order /// let mut abef = u32x4(a, b, e, f); /// let mut cdgh = u32x4(c, d, g, h); /// let temp = K32X4[t] + work[t]; /// /// // this is the core expression /// cdgh = sha256rnds2(cdgh, abef, temp); /// abef = sha256rnds2(abef, cdgh, sha256swap(temp)); /// /// *state = [abef.0, abef.1, cdgh.0, cdgh.1, /// abef.2, abef.3, cdgh.2, cdgh.3]; /// } /// ``` /// /// instead of 4 rounds of: /// /// ```ignore /// fn round(state: &mut [u32; 8], w: &mut [u32], t: usize) { /// let [a, b, c, mut d, e, f, g, mut h]: [u32; 8] = *state; /// /// h += big_sigma1!(e) + choose!(e, f, g) + K32[t] + w[t]; d += h; /// h += big_sigma0!(a) + majority!(a, b, c); /// /// *state = [h, a, b, c, d, e, f, g]; /// } /// ``` /// /// **NOTE**: It is important to note, however, that these instructions are not /// implemented by any CPU (at the time of this writing), and so they are /// emulated in this library until the instructions become more common, and gain /// support in LLVM (and GCC, etc.). pub fn compress256(state: &mut [u32; 8], block: &[u8; 64]) { let mut block_u32 = [0u32; BLOCK_LEN]; BE::read_u32_into(block, &mut block_u32[..]); sha256_digest_block_u32(state, &block_u32); }