1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//! Digital Signatures
//!
//! DSA ensures a message originated from a known sender, and was not modified.
//! DSA uses asymetrical keys and an algorithm to output a signature of the message
//! using the private key that can be validated with the public key but not be generated
//! without the private key.

use ffi;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::c_int;
use std::fmt;
use std::mem;
use std::ptr;

use bn::{BigNum, BigNumRef};
use error::ErrorStack;
use pkey::{HasParams, HasPrivate, HasPublic, Private, Public};
use {cvt, cvt_p};

generic_foreign_type_and_impl_send_sync! {
    type CType = ffi::DSA;
    fn drop = ffi::DSA_free;

    /// Object representing DSA keys.
    ///
    /// A DSA object contains the parameters p, q, and g.  There is a private
    /// and public key.  The values p, g, and q are:
    ///
    /// * `p`: DSA prime parameter
    /// * `q`: DSA sub-prime parameter
    /// * `g`: DSA base parameter
    ///
    /// These values are used to calculate a pair of asymetrical keys used for
    /// signing.
    ///
    /// OpenSSL documentation at [`DSA_new`]
    ///
    /// [`DSA_new`]: https://www.openssl.org/docs/man1.1.0/crypto/DSA_new.html
    ///
    /// # Examples
    ///
    /// ```
    /// use openssl::dsa::Dsa;
    /// use openssl::error::ErrorStack;
    /// use openssl::pkey::Private;
    ///
    /// fn create_dsa() -> Result<Dsa<Private>, ErrorStack> {
    ///     let sign = Dsa::generate(2048)?;
    ///     Ok(sign)
    /// }
    /// # fn main() {
    /// #    create_dsa();
    /// # }
    /// ```
    pub struct Dsa<T>;
    /// Reference to [`Dsa`].
    ///
    /// [`Dsa`]: struct.Dsa.html
    pub struct DsaRef<T>;
}

impl<T> Clone for Dsa<T> {
    fn clone(&self) -> Dsa<T> {
        (**self).to_owned()
    }
}

impl<T> ToOwned for DsaRef<T> {
    type Owned = Dsa<T>;

    fn to_owned(&self) -> Dsa<T> {
        unsafe {
            ffi::DSA_up_ref(self.as_ptr());
            Dsa::from_ptr(self.as_ptr())
        }
    }
}

impl<T> DsaRef<T>
where
    T: HasPublic,
{
    private_key_to_pem! {
        /// Serializes the private key to a PEM-encoded DSAPrivateKey structure.
        ///
        /// The output will have a header of `-----BEGIN DSA PRIVATE KEY-----`.
        ///
        /// This corresponds to [`PEM_write_bio_DSAPrivateKey`].
        ///
        /// [`PEM_write_bio_DSAPrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_write_bio_DSAPrivateKey.html
        private_key_to_pem,
        /// Serializes the private key to a PEM-encoded encrypted DSAPrivateKey structure.
        ///
        /// The output will have a header of `-----BEGIN DSA PRIVATE KEY-----`.
        ///
        /// This corresponds to [`PEM_write_bio_DSAPrivateKey`].
        ///
        /// [`PEM_write_bio_DSAPrivateKey`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_write_bio_DSAPrivateKey.html
        private_key_to_pem_passphrase,
        ffi::PEM_write_bio_DSAPrivateKey
    }

    to_pem! {
        /// Serialies the public key into a PEM-encoded SubjectPublicKeyInfo structure.
        ///
        /// The output will have a header of `-----BEGIN PUBLIC KEY-----`.
        ///
        /// This corresponds to [`PEM_write_bio_DSA_PUBKEY`].
        ///
        /// [`PEM_write_bio_DSA_PUBKEY`]: https://www.openssl.org/docs/man1.1.0/crypto/PEM_write_bio_DSA_PUBKEY.html
        public_key_to_pem,
        ffi::PEM_write_bio_DSA_PUBKEY
    }

    to_der! {
        /// Serializes the public key into a DER-encoded SubjectPublicKeyInfo structure.
        ///
        /// This corresponds to [`i2d_DSA_PUBKEY`].
        ///
        /// [`i2d_DSA_PUBKEY`]: https://www.openssl.org/docs/man1.1.0/crypto/i2d_DSA_PUBKEY.html
        public_key_to_der,
        ffi::i2d_DSA_PUBKEY
    }

    /// Returns a reference to the public key component of `self`.
    pub fn pub_key(&self) -> &BigNumRef {
        unsafe {
            let mut pub_key = ptr::null();
            DSA_get0_key(self.as_ptr(), &mut pub_key, ptr::null_mut());
            BigNumRef::from_ptr(pub_key as *mut _)
        }
    }
}

impl<T> DsaRef<T>
where
    T: HasPrivate,
{
    /// Returns a reference to the private key component of `self`.
    pub fn priv_key(&self) -> &BigNumRef {
        unsafe {
            let mut priv_key = ptr::null();
            DSA_get0_key(self.as_ptr(), ptr::null_mut(), &mut priv_key);
            BigNumRef::from_ptr(priv_key as *mut _)
        }
    }
}

impl<T> DsaRef<T>
where
    T: HasParams,
{
    /// Returns the maximum size of the signature output by `self` in bytes.
    ///
    /// OpenSSL documentation at [`DSA_size`]
    ///
    /// [`DSA_size`]: https://www.openssl.org/docs/man1.1.0/crypto/DSA_size.html
    pub fn size(&self) -> u32 {
        unsafe { ffi::DSA_size(self.as_ptr()) as u32 }
    }

    /// Returns the DSA prime parameter of `self`.
    pub fn p(&self) -> &BigNumRef {
        unsafe {
            let mut p = ptr::null();
            DSA_get0_pqg(self.as_ptr(), &mut p, ptr::null_mut(), ptr::null_mut());
            BigNumRef::from_ptr(p as *mut _)
        }
    }

    /// Returns the DSA sub-prime parameter of `self`.
    pub fn q(&self) -> &BigNumRef {
        unsafe {
            let mut q = ptr::null();
            DSA_get0_pqg(self.as_ptr(), ptr::null_mut(), &mut q, ptr::null_mut());
            BigNumRef::from_ptr(q as *mut _)
        }
    }

    /// Returns the DSA base parameter of `self`.
    pub fn g(&self) -> &BigNumRef {
        unsafe {
            let mut g = ptr::null();
            DSA_get0_pqg(self.as_ptr(), ptr::null_mut(), ptr::null_mut(), &mut g);
            BigNumRef::from_ptr(g as *mut _)
        }
    }
}

impl Dsa<Private> {
    /// Generate a DSA key pair.
    ///
    /// Calls [`DSA_generate_parameters_ex`] to populate the `p`, `g`, and `q` values.
    /// These values are used to generate the key pair with [`DSA_generate_key`].
    ///
    /// The `bits` parameter corresponds to the length of the prime `p`.
    ///
    /// [`DSA_generate_parameters_ex`]: https://www.openssl.org/docs/man1.1.0/crypto/DSA_generate_parameters_ex.html
    /// [`DSA_generate_key`]: https://www.openssl.org/docs/man1.1.0/crypto/DSA_generate_key.html
    pub fn generate(bits: u32) -> Result<Dsa<Private>, ErrorStack> {
        ffi::init();
        unsafe {
            let dsa = Dsa::from_ptr(cvt_p(ffi::DSA_new())?);
            cvt(ffi::DSA_generate_parameters_ex(
                dsa.0,
                bits as c_int,
                ptr::null(),
                0,
                ptr::null_mut(),
                ptr::null_mut(),
                ptr::null_mut(),
            ))?;
            cvt(ffi::DSA_generate_key(dsa.0))?;
            Ok(dsa)
        }
    }

    /// Create a DSA key pair with the given parameters
    ///
    /// `p`, `q` and `g` are the common parameters.
    /// `priv_key` is the private component of the key pair.
    /// `pub_key` is the public component of the key. Can be computed via `g^(priv_key) mod p`
    pub fn from_private_components(
        p: BigNum,
        q: BigNum,
        g: BigNum,
        priv_key: BigNum,
        pub_key: BigNum,
    ) -> Result<Dsa<Private>, ErrorStack> {
        ffi::init();
        unsafe {
            let dsa = Dsa::from_ptr(cvt_p(ffi::DSA_new())?);
            cvt(DSA_set0_pqg(dsa.0, p.as_ptr(), q.as_ptr(), g.as_ptr()))?;
            mem::forget((p, q, g));
            cvt(DSA_set0_key(dsa.0, pub_key.as_ptr(), priv_key.as_ptr()))?;
            mem::forget((pub_key, priv_key));
            Ok(dsa)
        }
    }
}

impl Dsa<Public> {
    from_pem! {
        /// Decodes a PEM-encoded SubjectPublicKeyInfo structure containing a DSA key.
        ///
        /// The input should have a header of `-----BEGIN PUBLIC KEY-----`.
        ///
        /// This corresponds to [`PEM_read_bio_DSA_PUBKEY`].
        ///
        /// [`PEM_read_bio_DSA_PUBKEY`]: https://www.openssl.org/docs/man1.0.2/crypto/PEM_read_bio_DSA_PUBKEY.html
        public_key_from_pem,
        Dsa<Public>,
        ffi::PEM_read_bio_DSA_PUBKEY
    }

    from_der! {
        /// Decodes a DER-encoded SubjectPublicKeyInfo structure containing a DSA key.
        ///
        /// This corresponds to [`d2i_DSA_PUBKEY`].
        ///
        /// [`d2i_DSA_PUBKEY`]: https://www.openssl.org/docs/man1.0.2/crypto/d2i_DSA_PUBKEY.html
        public_key_from_der,
        Dsa<Public>,
        ffi::d2i_DSA_PUBKEY
    }

    /// Create a new DSA key with only public components.
    ///
    /// `p`, `q` and `g` are the common parameters.
    /// `pub_key` is the public component of the key.
    pub fn from_public_components(
        p: BigNum,
        q: BigNum,
        g: BigNum,
        pub_key: BigNum,
    ) -> Result<Dsa<Public>, ErrorStack> {
        ffi::init();
        unsafe {
            let dsa = Dsa::from_ptr(cvt_p(ffi::DSA_new())?);
            cvt(DSA_set0_pqg(dsa.0, p.as_ptr(), q.as_ptr(), g.as_ptr()))?;
            mem::forget((p, q, g));
            cvt(DSA_set0_key(dsa.0, pub_key.as_ptr(), ptr::null_mut()))?;
            mem::forget(pub_key);
            Ok(dsa)
        }
    }
}

impl<T> fmt::Debug for Dsa<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "DSA")
    }
}

cfg_if! {
    if #[cfg(any(ossl110, libressl273))] {
        use ffi::{DSA_get0_key, DSA_get0_pqg, DSA_set0_key, DSA_set0_pqg};
    } else {
        #[allow(bad_style)]
        unsafe fn DSA_get0_pqg(
            d: *mut ffi::DSA,
            p: *mut *const ffi::BIGNUM,
            q: *mut *const ffi::BIGNUM,
            g: *mut *const ffi::BIGNUM)
        {
            if !p.is_null() {
                *p = (*d).p;
            }
            if !q.is_null() {
                *q = (*d).q;
            }
            if !g.is_null() {
                *g = (*d).g;
            }
        }

        #[allow(bad_style)]
        unsafe fn DSA_get0_key(
            d: *mut ffi::DSA,
            pub_key: *mut *const ffi::BIGNUM,
            priv_key: *mut *const ffi::BIGNUM)
        {
            if !pub_key.is_null() {
                *pub_key = (*d).pub_key;
            }
            if !priv_key.is_null() {
                *priv_key = (*d).priv_key;
            }
        }

        #[allow(bad_style)]
        unsafe fn DSA_set0_key(
            d: *mut ffi::DSA,
            pub_key: *mut ffi::BIGNUM,
            priv_key: *mut ffi::BIGNUM) -> c_int
        {
            (*d).pub_key = pub_key;
            (*d).priv_key = priv_key;
            1
        }

        #[allow(bad_style)]
        unsafe fn DSA_set0_pqg(
            d: *mut ffi::DSA,
            p: *mut ffi::BIGNUM,
            q: *mut ffi::BIGNUM,
            g: *mut ffi::BIGNUM) -> c_int
        {
            (*d).p = p;
            (*d).q = q;
            (*d).g = g;
            1
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use bn::BigNumContext;
    use hash::MessageDigest;
    use pkey::PKey;
    use sign::{Signer, Verifier};

    #[test]
    pub fn test_generate() {
        Dsa::generate(1024).unwrap();
    }

    #[test]
    fn test_pubkey_generation() {
        let dsa = Dsa::generate(1024).unwrap();
        let p = dsa.p();
        let g = dsa.g();
        let priv_key = dsa.priv_key();
        let pub_key = dsa.pub_key();
        let mut ctx = BigNumContext::new().unwrap();
        let mut calc = BigNum::new().unwrap();
        calc.mod_exp(g, priv_key, p, &mut ctx).unwrap();
        assert_eq!(&calc, pub_key)
    }

    #[test]
    fn test_priv_key_from_parts() {
        let p = BigNum::from_u32(283).unwrap();
        let q = BigNum::from_u32(47).unwrap();
        let g = BigNum::from_u32(60).unwrap();
        let priv_key = BigNum::from_u32(15).unwrap();
        let pub_key = BigNum::from_u32(207).unwrap();

        let dsa = Dsa::from_private_components(p, q, g, priv_key, pub_key).unwrap();
        assert_eq!(dsa.pub_key(), &BigNum::from_u32(207).unwrap());
        assert_eq!(dsa.priv_key(), &BigNum::from_u32(15).unwrap());
        assert_eq!(dsa.p(), &BigNum::from_u32(283).unwrap());
        assert_eq!(dsa.q(), &BigNum::from_u32(47).unwrap());
        assert_eq!(dsa.g(), &BigNum::from_u32(60).unwrap());
    }

    #[test]
    fn test_pub_key_from_parts() {
        let p = BigNum::from_u32(283).unwrap();
        let q = BigNum::from_u32(47).unwrap();
        let g = BigNum::from_u32(60).unwrap();
        let pub_key = BigNum::from_u32(207).unwrap();

        let dsa = Dsa::from_public_components(p, q, g, pub_key).unwrap();
        assert_eq!(dsa.pub_key(), &BigNum::from_u32(207).unwrap());
        assert_eq!(dsa.p(), &BigNum::from_u32(283).unwrap());
        assert_eq!(dsa.q(), &BigNum::from_u32(47).unwrap());
        assert_eq!(dsa.g(), &BigNum::from_u32(60).unwrap());
    }

    #[test]
    fn test_signature() {
        const TEST_DATA: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        let dsa_ref = Dsa::generate(1024).unwrap();

        let p = dsa_ref.p();
        let q = dsa_ref.q();
        let g = dsa_ref.g();

        let pub_key = dsa_ref.pub_key();
        let priv_key = dsa_ref.priv_key();

        let priv_key = Dsa::from_private_components(
            BigNumRef::to_owned(p).unwrap(),
            BigNumRef::to_owned(q).unwrap(),
            BigNumRef::to_owned(g).unwrap(),
            BigNumRef::to_owned(priv_key).unwrap(),
            BigNumRef::to_owned(pub_key).unwrap(),
        )
        .unwrap();
        let priv_key = PKey::from_dsa(priv_key).unwrap();

        let pub_key = Dsa::from_public_components(
            BigNumRef::to_owned(p).unwrap(),
            BigNumRef::to_owned(q).unwrap(),
            BigNumRef::to_owned(g).unwrap(),
            BigNumRef::to_owned(pub_key).unwrap(),
        )
        .unwrap();
        let pub_key = PKey::from_dsa(pub_key).unwrap();

        let mut signer = Signer::new(MessageDigest::sha256(), &priv_key).unwrap();
        signer.update(TEST_DATA).unwrap();

        let signature = signer.sign_to_vec().unwrap();
        let mut verifier = Verifier::new(MessageDigest::sha256(), &pub_key).unwrap();
        verifier.update(TEST_DATA).unwrap();
        assert!(verifier.verify(&signature[..]).unwrap());
    }

    #[test]
    fn clone() {
        let key = Dsa::generate(2048).unwrap();
        drop(key.clone());
    }
}